

im Pressure 450 bar Máx

High Power Density

Over the years, motors from the MS range have become an unrivaled benchmark on the hydraulic motor market thanks to their ability to meet our customers' requirements perfectly in terms of performance and reliability. The millions that have been sold help to meet the needs of machine manufacturers and end users every day.

The MS range proves how modular it is by adapting to your machines as much as possible. It equips both mobile and industrial applications equally well.

Maximum efficiency

With their tried and tested radial piston cam design, which is continually being improved, MS motors are highly efficient at any speed or operating pressure. They thereby make a major contribution to the energy efficiency of your machines.

Maximum productivity

With their optimized design, the result of thousands of hours of development and testing, motors from the MS range can withstand the most extreme operating conditions and still require very little maintenance. They therefore reduce your machine downtime, which in turn optimizes productivity.

Maximum performance

In addition to its MS Classic range, Poclain Hydraulics offers an MS HighFlow[™] range, which can achieve performance levels to suit the needs of the most demanding machines.

MS RANGE

A solution for every need

Total versatility

The modular design of the MS range of motors lets you create a motor that perfectly matches your performance requirements while easily integrating into your design constraints. This flexibility will reduce your development costs and speed up the market entry of your new machines.

SELECT YOUR HYDROBASE

1-displacement without parking brake

1-displacement with parking brake

SELECT YOUR BEARING SUPPORT

Wheel flange

Male splined shaft

Keyed shaft

Dual sprocket

Femal splined shaft

Shaft for shrink disc

NAMES AND ADDRESS OF TAXABLE PARTY.

MS RANGE CLASSIC

The unrivaled benchmark

Given their optimized and modular design capable of delivering high performance, motors from the MS Classic range have established themselves as a benchmark on the hydraulic motor market.

Optimized performances

The MS HighFlow[™] motor range has all the qualities that have made the MS Classic range such a success: they are modular and robust, offering performance advantages at the same time.

- ➤ Compacity
- > Optimized cost
- > Power density

Flat port

Flange a valve directly

Distribution «HighFlow»

Reduced pressure drop

Symmetrical 2-displacement

Identical performance in both rotation directions

MS RANGE HIGHFLOWTM

Maximum productivity

Boosting the performance of your machines without compromising on consumption.

Thanks to their new design, the motors in the MS HighFlow[™] range attain the highest speeds without additional pressure drop. In this way they guarantee greater productivity for machines.

A HighFlow[™] motor can reach higher speeds for the same pressure drop.

Minimum consumption

Reduce the consumption of your machines without affecting their performance.

The motors from the MS HighFlow[™] range help lower the «Total Cost of Ownership" of the machines by making them use less fuel.

MS Classic performances

			Full displace	ement ⁽¹⁾		Reduced displacement ⁽²⁾							
	Max. Pressure bar [PSI]	Displacement range cm³/rev [cu.in/rev]	Max. Torque*** ⁽³⁾ N.m [lbf.ft]	Max. Speed ⁽⁴⁾⁽⁵⁾ RPM	Max. Power kW [HP]	Displacement range cm³/rev [cu.in/rev]	Max. Torque ⁽³⁾ N.m [lbf.ft]	Max. Speed ⁽⁴⁾ RPM	Max. Power kW [HP]				
MS02	450 [6526]	172 - 255 [10.5] - [15.6]	1 800 [1227]	590	18 [24]	86 - 128 [5.2] - [7.8]	916 [676]	590	12 [16]				
MSE02	400 [5800]	332 - 398 [20.2] - [24.3]	2 500 [1843]	265	22 [29.5]	166 - 199 [10.1] - [12.1]	1 260 [930]	340	16,5 [22]				
MSE03	350 [5080]	450 - 500 [27.4] - [30.5]	2 780 [2050]	155	22 [30]	225 - 250 [13.7] - [15.2]	1 390 [1025]	183	16,5 [22]				
MS05	450 [6526]	260 - 560 [15.9] - [34.2]	4 000 [2950]	265	29 [39]	130 - 280 [7.9] - [17.1]	2 000 [1475]	265	19 [25]				
MSE05	400 [5800]	503 - 750 [30.7] - [45.7]	4 770 [3518]	200	29 [39]	251 - 375 [15.3] - [22.9]	2 390 [1762]	200	19 [25]				
MS08	450 [6526]	467 - 934 [28.5] - [57.0]	6 690 [4934]	210	41 [55]	234 - 467 [14.2] - [28.5]	3 345 [2467]	210	27 [36]				
MSE08	400 [5800]	1 043 - 1 248 [63.6] - [76.1]	7 945 [5859]	130	41 [55]	522 - 624 [31.8] - [38.1]	3 970 [2928]	130	27 [36]				
MS11	450 [6526]	730 - 1 259 [44.5] - [76.8]	9 000 [6638]	200	50 [67]	365 - 630 [22.3] - [38.4]	4 500 [3319]	200	33 [44]				
MSE11	400 [5800]	1 263 - 1 687 [77.0] - [102.9]	10 700 [7891]	170	50 [67]	632 - 844 [38.5] - [51.4]	5 370 [3960]	190	33 [44]				
MS18	450 [6526]	1 091 - 2 099 [66.5] - [128]	15 000 [11063]	170	70 [94]	546 - 1 050 [33.3] - [64]	7 520 [5546]	170	47 [63]				
MSE18	400 [5800]	2 340 - 2 812 [142.8] - [171.6]	17 900 [13202]	90	70 [94]	1 170 - 1 406 [71.4] - [85.8]	8 950 [6601]	110	47 [63]				
MS25	450 [6526]	2 004- 3 006 [122.3] - [183.4]	21 500 [15857]	145	90 [121]	1 002- 1 503 [61.1] - [91.7]	10 760 [7936]	145	60 [80]				
MS35	450 [6526]	2 439 - 4 198 [148.8] - [256]	30 000 [22126]	140	110 [148]	1 220 - 2 099 [74.4] - [128]	15 000 [11063]	140	73 [98]				
MS50	450 [6526]	3 500 - 6 011 [213.5] - [366.6]	43 000 [31715]	148	140 [188]	1 750 - 3 006 [106.7] - [183.3]	21 528 [15878]	148	93 [125]				
MS83	450 [6526]	6 679 - 10 019 [407.4] - [611.1]	71 755 [52924]	65	200 [268]	3 340 - 5 010 [203.7] - [305.5]	35 880 [26464]	87	135 [181]				
MS125	450 [6526]	10 000 - 15 000 [69] - [915]	77 000 [56 792]	50	240 [322]	5 000 - 7 500 [305] - [457.4]	53 715 [39618]	50	160 [215]				

(1) Available for 1-displacement and 2-displacements motors(2) Only available for 2-displacements motors (3) Theoretical torque: $1/(20 \pi)$ x displacement x max. pressure (4) Based on nominal no-load ΔP of 20 bar [290 PSI] (5) Max. speed for 1-displacement motor

MS HighFlow[™] performances

			Sull displacement range m³/rev [cu.in/rev] Max. Torque ⁽³⁾ Max. [172 - 255 (10.5] - [15.6] Max. Torque ⁽³⁾ Max. N.m [lbf.ft] Max. Spect Spec		
	Max. Pressure bar [PSI]	Displacement range cm³/rev [cu.in/rev]	Max. Torque ⁽³⁾ N.m [lbf.ft]	Max. Speed ⁽⁴⁾⁽⁵⁾ RPM	
MS02	450 [6526]	172 - 255 [10.5] - [15.6]	1 800 [1227]	590	
MSE02	400 [5800]	332 - 398 [20.2] - [24.3]	2 500 [1843]	375	
MS05	450 [6526]	260 - 560 [15.9] - [34.2]	4 000 [2950]	500	
MSE05	400 [5800]	625 - 750 [38.1] - [45.7]	4 770 [3518]	320	
MS08	450 [6526]	467 - 934 [28.5] - [57.0]	6 690 [4934]	420	
MSE08	400 [5800]	1 043 - 1 248 [63.6] - [76.1]	7 945 [5859]	200	
MS83	450 [6526]	6 679 - 10 019 [407.4] - [611.1]	71 755 [52924]	200	
MS125	450 [6526]	10 000 - 15 000 [69] - [915]	77 000 [56 792]	130	

(1) Available for 1-displacement and 2-displacements motors (2) Only available for 2-displacements motors (3) Theoretical torque : $1/(20 \pi)$ x displacement x max. pressure (4) Based on nominal no-load ΔP of 20 bar [290 PSI] (5) Max. speed for 1-displacement motor

YOU NEED MORE INFORMATION?

See our technical catalogues in our web site

Product > Catalogs > Access to Technical Catalogs.

http://www.poclain-hydraulics.com/en/technical-catalogs.

	Re	duced displa	acement ⁽²⁾	
Max.	Displacement	Max.	Max.	Max.
Power	range	Torque ⁽³⁾	Speed ⁽⁴⁾	Power
kW [HP]	cm³/rev [cu.in/rev]	N.m [lbf.ft]	RPM	kW [HP]
18	86 - 128	916	590	12
[24]	[5.2] - [7.8]	[676]		[16]
22	166 - 199	1 260	425	16,5
[29.5]	[10.1] - [12.1]	[930]		[22]
29	130 - 280	2 000	520	19
[39]	[7.9] - [17.1]	[1475]		[25]
29	312,5 - 375	2 390	310	19
[39]	[19.1] - [22.9]	[1762]		[25]
41	234 - 467	3 345	460	27
[55]	[14.2] - [28.5]	[2467]		[36]
41	522 - 624	3 970	225	27
[55]	[31.8] - [38.1]	[2928]		[36]
200	3 340 - 5 010	35 880	145	135
[268]	[203.7] - [305.5]	[26464]		[181]
240	5 000 - 7 500	53 715	105	160
[322]	[305] - [457.4]	[39618]		[215]

MS Classic dimensions

1C : full displacement 2C : full and reduced displacement

MS HighFlow™ dimensions

1C : full displacement 2C : full and reduced displacement

Wheel Motors

	1000		MS02 MSE02	MSE03	MS05 MSE05	MS08 MSE08	MS11 MSE11	MS18 MSE18	MS25	MS35	M\$50	M\$83	M\$125
14	10	mm [in]	224,7 [8.85]	250 [9.84]	280 [11.02]	315 [12.40]	363 [14.29]	395 [15.55]	455 [17.91]	502 [19.76]	590 [23.23]	665 [26.18]	733 [28.86]
LI -	2C	mm [in]	255,7 [10.07]	254 [10.00]	293 [11.54]	331 [13.03]	365 [14.37]	413 [16.25]	455 [17.91]	502 [19.76]	590 [23.23]	665 [26.18]	733 [28.86]
L2	10	mm [in]	276,8 [10.90]	296 [11.65]	335 [13.20]	367 [14.45]	427,5 [16.83]	448,7 [17.66]	593,5 [23.36]	639,5 [25.17]	729 [28.70]	797 [31.38]	874 [34.40]
max.*	2C	mm [in]	304,2 [11.98]	300 [11.8]	334 [13.15]	384 [15.12]	426,5 [16.79]	458,7 [18.06]	612,5 [24.11]	639,5 [25.17]	729 [28.70]	797 [31.38]	874 [34.40]
A dia. max.		mm [in]	235 [9.25]	238 [9.37]	300 [11.81]	335 [13.19]	375 [14.76]	425 [16.73]	485 [19.09]	485 [19.09]	485 [19.09]	555,5 [21.87]	555 [21.85]
Weight max.**		kg [lb]	34 [75]	32 [70]	52 [114]	84 [185]	116 [255]	160 [352]	270 [594]	269 [592]	415 [913]	546 [1201]	563 [1239]

* Wheel motor with the longest multidiscs brake. ** Full displacement wheel motor with multidiscs brake.

Shaft Motors

an the			MS02 MSE02	MSE03	MS05 MSE05	MS08 MSE08	MS11 MSE11	MS18 MSE18	M\$25	M\$35	MS50	MS83	MS125
14	10	mm [in]	258,1 [10.16]	-	308 [12.13]	340 [13.38]	380 [14.96]	432 [17.00]	525 [20.67]	580 [22.83]	678 [26.69]	822 [32.36]	822 [32.36]
	2C	mm [in]	289,5 [11.4]	- -	324 [12.76]	356 [14.02]	398 [15.28]	451 [17.76]	525 [20.67]	580 [22.83]	678 [26.69]	822 [32.36]	822 [32.36]
L2	10	mm [in]	310,5 [12.22]	- -	366 [14.41]	392 [15.43]	458,5 [18.05]	532,3 [20.95]	664 [26.14]	717 [28.22]	817 [32.16]	955 [37.60]	962 [37.87]
max.*	2C	mm [in]	338 [13.3]	- -	366 [14.41]	409 [16.10]	458,5 [18.05]	532,3 [20.95]	664 [26.14]	717 [28.22]	817 [32.16]	955 [37.60]	962 [37.87]
A dia. max.		mm [in]	235 [8.07]	- -	300 [11.81]	335 [13.19]	375 [14.76]	425 [16.73]	485 [19.09]	425 [16.73]	485 [19.09]	565 [22.24]	565 [22.24]
Weight max.**		kg [lb]	36 [79]	-	55 [121]	85 [187]	114 [251]	152 [334]	255 [561]	269 [592]	370 [814]	527 [1159]	573 [1261]

Shaft motor with the long

Wheel Motors

			MS02 MSE02	MS05 MSE05	MS08 MSE08	MS83	r
14	1C	mm [in]	252,2 [9.93]	316 [12.44]	296 [11.65]	665 [26.18]	
	20	mm [in]	269,7 [10.62]	332 [13.07]	351 [13.82]	665 [26.18]	
L2	1C	mm [in]	304,3 [11.98]	379 [14.92]	- [-]	797 [31.38]	
max.	* 2C	mm [in]	318,2 [12.53]	375 [14.76]	425 [16.73]	797 [31.38]	
A dia max.	l.	mm [in]	235 [9.25]	300 [11.81]	335 [13.19]	555,5 [21.87]	
Weig max.	ht **	kg [lb]	34 [75]	60 [132]	84 [185]	546 [1201]	

* Wheel motor with the longest multidiscs brake. ** Full displacement wheel motor with multidiscs brake.

-

* Shaft motor with the longest multidiscs brake. ** Full displacement shaft motor with multidiscs brake.

MS125

Bearing support types

Wheel flange	Male splined shaft	Femal splined shaft	Keyed shaft	Shaft for shrink disc	Dual sprocket
•	•		•		•
•					
•	•		•		•
•	•		•		
•	•				
•	•			•	
•	•			•	
•	•			•	
•	•			•	
•	•	•		•	
•	•	•		•	
	Wheel flange •	Wheel flange Male splined shaft • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •	Wheel flange Male splined shaft Femal splined shaft • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •	Wheel flange Male splined shaft Femal splined shaft Keyed shaft • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •	Wheel flangeMale splined shaftFemal splined shaftKeyed shaftShaft for shrink disc••

Motor fixation types

Chassis fixation on the valving cover - two ears

Chassis fixation on the bearing - two ears

Chassis fixation on the bearing - circular

MS02-E02	•	•	
MSE03	•	•	
MS05-E05	•	•	
MS08-E08	•	•	
M\$11-E11	•	•	
MS18-E18	•	•	
MS25	•	•	
M\$35	•	•	•
MS50	•		•
MS83	•		•
M\$125	•		•

Brakes

Multidisc brake mounted at the rear of the motor

F and T brake: Brake with simple plate T brake: Brake with reinforced plate

Brake torque

	Parking	Emergency											
	N.m [lb.ft]	N.m [lb.ft]	MS02 MSE02	MSE03	MS05 MSE05	MS08 MSE08	MS11 MSE11	MS18 MSE18	MS25	MS35	MS50	M\$83	M\$125
F03	2 500 [1840]	1 625 [1198]	•	•									
F05	3 060 [2260]	1 990 [1467]			•								
F04/T04	4 220 [3110]	2 740 [2020]			٠								
F08	5 620 [4150]	3 650 [2692]				•							
F09/T09	9 000 [6640]	5 850 [4314]				•							
F12/T12	11 840 [8730]	7 700 [5679]					•	٠		•			
F19/T19	18 600 [13720]	12 800 [9440]						٠		•			
P21	20 500 [15120]	13 325 [9830]							•	•	•		
T42	25 000 [18440]	16 250 [11985]							٠	•	•		
T50	30 000 [22130]	19 500 [14380]							•	•	•		٠
T83	42 000 [30980]	27 300 [20135]									•	٠	٠
T80	72 000 [53104]											٠	٠

Drum brake

Dynamic braking torque

	N.m [lb.ft]	MS02 MSE02	MS05 MSE05	MS08 MSE08	MS11 MSE11	MS18 MSE18	M\$25	MS35	M\$50
(200 x 40)	1 300 [959]	•							
(203 x 60)	2 750 [2028]	•							
(250 x 60)	5 000 [3688]		•						
(270 x 60)	6 000 [4425]			٠					
(315 x 80)	12 000 [8851]			•	•				
(350 x 60)	11 000 [8113]					•			
(432 x 102)	27 000 [19914]					•	٠	٠	٠

BOOSTED BRAKE

More safety for self-propelled machines

Boosted Braking[™] offers increased hydrostatic braking capabilities. It meets regulatory requirements on braking distance and limits the use of friction brakes installed on the machine. Boosted Braking™ capabilities are independent of the restraining capability of the installed internal combustion engine. The solution also prevents excessive internal combustion engine rpm during braking phases.

It can be applied to all machines that are subject to strong and/or repeated decelerations, whether on or off road. Boosted Braking[™] is recommended in particular for machines equipped with a internal combustion engine with low restraining capabilities.

Boosted Braking[™] applies the hydrostatic braking principle. It uses the full displacement of the internal combustion engine, not just the displacement active at the time of braking, such as the under-displacement necessary to reach road speeds.

Boosted Braking[™] does not use the restraining capability of internal combustion engines. It converts the machine's kinetic energy into heat in the hydrostatic transmission oil. This heat is then dissipated in the cooler.

This solution has the following benefits:

- · Reduction of braking distances in both road and off-road mode
- A wear-free solution: prevents (or limits) the use of friction brakes and requires no maintenance.
- internal combustion engines with low restraining capabilities.

Protection of internal combustion engines from excess rpm: protects hydrostatic braking capabilities even for

· Easy integration into the machine: solution integrated in the hydraulic motor requiring no special pipe connections

Additional features

Thermal control

	MS02-E02	MSE03	MS05-E05	MS08-E08	MS11-E11	MS18-E18	MS25	MS35	MS50	MS83	MS125
Exchange valve	•		٠	•	•	٠		٠			
High volumetric efficiency	•	•	٠	•	٠	٠	٠	٠	٠	٠	•
Case flushing	•	٠	•	•	•	٠	٠	٠	٠	٠	•

Speed

	M\$02-E02	MSE03	MS05-E05	MS08-E08	M\$11-E11	M\$18-E18	MS25	MS35	M\$50	M\$83	MS125
High speed / Low pressure drop	•	٠	٠	•	•	٠	٠	٠	٠	٠	•
Speed sensor	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	•

Reinforcement

	M\$02-E02	MSE03	MS05-E05	MS08-E08	MS11-E11	MS18-E18	MS25	MS35	M\$50	MS83	M\$125
Extra long life (Diamond™)	٠	٠	٠	•	•	•	٠	٠	•	٠	•
PEEK bushing	٠	٠	٠	•	•	٠		•			
Reinforced plate	٠	٠	٠	•	•	٠	٠	٠	٠	٠	٠
Monobloc cover			٠	•							

High pressure connection

	MS02-E02	MSE03	MS05-E05	MS08-E08	MS11-E11	MS18-E18	MS25	MS35	MS50	MS83	MS125
Flange			•	•	•	•	٠	٠	٠	٠	•
Metric	•		٠	٠	•	٠		٠			
UNF	•	•	•	•	•	•		٠			
Manifold interface			٠	•						٠	•

Hollow shaft

MS02-E02	MSE03	MS05-E05	MS08-E08	MS11-E11	MS18-E18	MS25	MS35	MS50	MS83	MS125
		•	•	•	٠	•	•	•	•	•

TWIN-LOCK™: HYDRAULIC ANTISKID SYSTEM

Improve the off-road capabilities of your machines

The TwinLock[™] system gives anti-skid capabilities to all-wheel-drive machines. Machines equipped with TwinLock[™] have improved off-road performance essentially for cases of poor grip. It applies to all machines with at least three-wheel drive.

The TwinLock[™] system transfers torque from wheels that are slipping to those that have good grip. It is the ideal compromise between a parallel circuit and a series circuit.

This solution has the following benefits:

- strong grip) Easy maintenance as the system is 100% hydraulic
- Less damage to the ground.

Motor sizes

Greater machine productivity as a result of better off-road performance.
Excellent adaptability of the solution (instantaneous torque transfer from a wheel with poor grip to a wheel with

800

Ć

Poclain Hydraulics supports you throughout the life cycle of your machines

RESEARCH AND DEVELOPMENT

Our computation and simulation systems optimize the performance characteristics, fuel economy, and working life of your machines.

SALES ASSISTANCE

Our application engineers give you the benefit of their expertise to identify the products in our ranges that best fit the performance of your machines.

Marth at

COMMISSIONING

Our technical experts can visit your site to commission and test your prototypes and applications.

TRAINING

Our certified training center can train your teams in the design, use, and repair of our hydraulic systems.

AFTER-SALES

Our worldwide network of certified repair centers can repair your products and provide fast delivery of replacement parts.

POCLAIN HYDRAULICS FRANCE SAS

Route de Compiègne 60410 Verberie FRANCE Tel: +33 3 44 40 77 77 Fax: +33 3 44 40 77 91 e-mail: info-france@poclain.com

POCLAIN HYDRAULICS GMBH

Werner-von-Siemens-Str. 35 64319 Pfungstadt GERMANY Tel.: +49 6157 / 9474-0 Fax.: +49 6157 / 9474-74 e-mail: info-deutschland@poclain.com

POCLAIN HYDRAULICS BENELUX BV

Florijinstraat 9 4879 AH Etten-Leur NETHERLANDS Tel: +31 76 502 4772 Fax: +31 76 50 12 279 e-mail: info-netherlands@poclain.com

POCLAIN HYDRAULICS LTD

Nene Valley Business Park Oundle, Peterborough, Cambs PE8 4HN UNITED KINGDOM Tel: +44 183 227 3773 Fax: +44 183 227 4990 e-mail: info-uk@poclain.com

POCLAIN HYDRAULICS AB

Sjöängsvägen 10 19272 Sollentuna SWEDEN Tel: +46 8 590 88 050 Fax: +46 8 590 74 110 e-mail: info-sverige@poclain.com

POCLAIN HYDRAULICS SRO

Ksirova 186 CZ 619 00 Brno - Horni Herspice CZECH REPUBLIC Tel: +420 543 563 111 Fax: +420 543 217 826 e-mail: info-ceskarepublika@poclain.com

POCLAIN HYDRAULICS SL

C/ Isaac Peral nº8-10. Local nº3 08960 - Sant Just Desvern (Barcelona) SPAIN Tel: +34 934 095 454 Fax:+34 934 902 179 e-mail: info-espana@poclain.com

POCLAIN HYDRAULICS SRL

Via Remesina int. 190 41012 Carpi (Modena) ITALY Tel: +39 059 655 0528 Fax: +39 059 655 0544 e-mail: info-italia@poclain.com

POCLAIN HYDRAULICS DOO

Industriiska ulica 2 SI-4226 Ziri SLOVENIA Tel: +386(0)4 51 59 100 Fax: +386(0) 4 51 59 122 e-mail: info-slovenia@poclain.com

Representation of POCLAIN HYDRAULICS

in Russia Russian Federation 127051 Moscow Bol'shoi Karetny pereulok 8/2, 3rd floor RUSSIA e-mail: info-russia@poclain.com

POCLAIN HYDRAULICS OY

Vernissakatu 6 01300 Vantaa FINLAND Tel.: +358 10 5043 160 e-mail: petteri.vahlsten@poclain.com

POCLAIN HYDRAULICS INC

1300 N. Grandview Parkway PO BOX 801 WI 53177 STURTEVANT LISA Tel.: +1.262.321.0676 5720/5721 Fax.: +1.262.321.0703 e-mail: info-america@poclain.com

For more information contact our sales subsidiaries

16

POCLAIN HYDRAULICS LATIN AMERICA

Rua Francisco Leitão. 469 Conj. 1508 - PINHEIROS CEP 05414-020 São Paulo -SP - BRA7II Tel.: +55 11 2615 8040 e-mail: miguel.onandia@poclain.com

POCLAIN HYDRAULICS CN

Room 606 Block A of Building one Quanshitiandi Plaza No. A50 Wangjing West Road Chaoyang District Beiiina Post code:100102 CHINA Tel.: +86.10.64.38.66.18 Fax.: +86.10.64.38.74.27 e-mail: info-china@poclain.com

POCLAIN HYDRAULICS PRIVATE LIMITED

3rd Floor, No 52, Agastya Arcade 80 Feet Road, Opposite MSR Hospital Bengaluru 560 094 ΙΝΟΙΑ Tel.: +91 80 23511999 e-mail: sales-india@poclain.com

POCLAIN HYDRAULICS KK

4-2. Mivoshi cho. Naka ku. Yokohama, Kanagawa 231-0034 JAPAN Tel.: +81-45-341-4420 Fax : +81-45-341-4422 e-mail: yoji.hirose@poclain.com

POCLAIN HYDRAULICS YH

#104-1010 Sindorim Prugio 337 Sindorim-dong, Guro-gu, Seoul, 152-748 - KOREA Tel.: +82 2 3439 7680 Fax.: +82 2 3439 7683 e-mail: info-korea@poclain.com

POCLAIN HYDRAULICS PTE LTD

10 Anson Road #35 - 10 International Plaza, 079903 SINGAPORE Tel.: +65 6220 1705 Fax.: +65 6223 8952 e-mail: info-singapore@poclain.com

Logistic center

● Sales subsidiary ★ R&D center

- > 10 plants on 3 continents
- > More than 20 subsidiaries and remote offices
- > Over 150 distributors around the world
- > 2,000 people worldwide

www.poclain-hydraulics.com

Motors

Pumps

Valves

Electronics

